propiedades-materiales
PROPIEDADES DE LOS MATERIALES  
  PROPIEDADES DE MATERIALES
  Contacto
  propiedades de los materiales
  UNIDAD 1 TIPOS DE MATERIALES
  METALES
  CERAMICOS
  SEMI CONDUCTORES
  POLIMEROS
  UNIDAD 3
  tipos de redes cristalinas
  RED CRISTALINA
  UNIDAD 4 PROPIEDADES DEL DIAMANTE
UNIDAD 3

Redes Cristalinas


En geometría y cristalografía las redes de Bravais son una disposición infinita de puntos discretos cuya estructura es invariante bajo cierto grupo de traslaciones. En la mayoría de casos también se da una invariancia bajo rotaciones o simetría rotacional. Estas propiedades hacen que desde todos los nodos de una red de Bravais se tenga la misma perspectiva de la red. Se dice entonces que los puntos de una red de Bravais son equivalentes.

Mediante teoría de grupos se ha demostrado que sólo existe una única red de Bravais unidimensional, 5 redes bidimensionales y 14 modelos distintos de redes tridimensionales.

La red unidimensional es elemental siendo ésta una simple secuencia de nodos equidistantes entre sí. En dos o tres dimensiones las cosas se complican más y la variabilidad de formas obliga a definir ciertas estructuras patrón para trabajar cómodamente con las redes.

Para generar éstas normalmente se usa el concepto de celda primitiva. Las celdas unitarias, son paralelogramos (2D) o paralelepípedos (3D) que constituyen la menor subdivisión de una red cristalina que conserva las características generales de toda la retícula, de modo que por simple traslación de la misma, puede reconstruirse la red al completo en cualquier punto.

Una red típica R en  mathbb{R}^n tiene la forma:


    R = left{ sum_{i=1}^n nu_i vec a_i ; | ; nu_i inBbb{Z} right}

donde {a1,..., an} es una base en el espacio Rn. Puede haber diferentes bases que generen la misma red pero el valor absoluto del determinante de los vectores ai vendrá siempre determinado por la red por lo que se lo puede representar como d(R).


TAPIA-HERNANDEZ  
   
Hoy habia 6 visitantes (9 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis